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We calculate thermopower of clean and impure bilayer graphene systems. Opening a band gap through the
application of an external electric field is shown to greatly enhance the thermopower of bilayer graphene,
which is more than four times that of the monolayer graphene and gapless bilayer graphene at room tempera-
ture. The effect of scattering by dilute charged impurities is discussed in terms of the self-consistent Born
approximation. Temperature dependence of the thermopower is also analyzed.
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I. INTRODUCTION

Seebeck coefficient, also called as thermopower, measures
the voltage drop across a material in response to a tempera-
ture drop. The achievement of large thermopower is a pre-
requisite to realistic applications in heat to electric energy
conversion. Thermopower, among other thermoelectric prop-
erties, also complements the conductivity in elucidating
mechanisms dominating the transport processes.1 Recently,
thermopower of monolayer graphene �MLG�, a peculiar two-
dimensional electronic system characterized by a Dirac-type
relativistic dispersion, attracts much attention from both
experimental2–4 and theoretical groups.1,5–8 Calculations tak-
ing the effect of charged impurity scattering into account
could explain the experimental results very well. The experi-
mentally observed deviation from the Mott relationship at
low carrier density is interpreted in terms of electron-hole
puddle formation1 and also by mixing of valence-band and
conduction-band states by impurity scattering.7

Bilayer graphene is another interesting material system
displaying many unusual properties. Upon applying an exter-
nal voltage, a semiconducting gap is induced in the other-
wise zero-gap band structure.9–14 The gap being tunable by
external potential difference between the two layers intro-
duces a new degree of freedom to bilayer graphene �BLG�.
Up to now, there is neither experimental nor theoretical work
on thermopower of bilayer graphene. It is the purpose of this
work to partially fill this gap by theoretically predicting the
behavior of thermopower in bilayer graphene systems.

It is established that charged impurity scattering is prima-
rily responsible for the transport behavior observed in mono-
layer graphene.15–17 For bilayer graphene, the prediction in
terms of charged impurity scattering is shown to be in quali-
tative agreement with the experimental result of the conduc-
tivity, and the opening of a gap in biased bilayer graphene is
proposed to further improve the agreement.18 In the present
work, we theoretically study the thermopower of gapped bi-
layer graphene. We treat charged impurity scattering in terms
of the self-consistent Born approximation �SCBA�.7,19–21 To
ensure the applicability of SCBA, we restrict our calculations
to relatively clean systems with low impurity concentrations,
where the localization effect is not severe.22–24 Thermopower
as a function of carrier concentration is mainly calculated at
room temperature. We also study the temperature depen-
dence of thermopower.

II. MODEL AND METHOD

We consider a bilayer graphene system composed of two
graphene single layers arranged in the Bernal stacking.25 We
start from a tight-binding model incorporating nearest-
neighboring intralayer and interlayer hopping terms. An on-
site potential-energy difference between the two layers is in-
cluded to model the effect of an external voltage. In the
presence of impurity, the Hamiltonian consists of two parts:

Ĥ= Ĥ0+ Ĥimp. Without of magnetic field or magnetic impuri-
ties, the two spin flavors are degenerate. We ignore the spin
degree of freedom here and multiply the results by two for
spin-dependent quantities. The free part of the Hamiltonian
is then written as

Ĥ0 = �
k

�k
†H0�k��k, �1�

in which the vector of fermion creation operators is defined
as �k

† = �a1k
† ,b1k

† ,b2k
† ,a2k

† �. a�k
† and b�k

† create � layer states
with wave vector k on the A and B sublattice, respectively.
Up to nearest-neighbor hopping, H0�k� is written as9,25–28

H0�k� =�
V

2
��k� t� 0

���k�
V

2
0 0

t� 0 −
V

2
���k�

0 0 ��k� −
V

2

� . �2�

��k�=−t� j=1
3 eik·�j describes the intralayer nearest-neighbor

hopping with strength t. The three nearest-neighbor vectors
are defined as �1= � 1

2 ,
�3
2 �a, �2= � 1

2 ,−
�3
2 �a, and �3= �−1,0�a,26

a=1.42 Å is the shortest carbon-carbon bond length. t� is
the nearest-neighbor interlayer hopping energy. In this work,
we take t=3 eV and t�=0.3 eV. V is the potential-energy
difference between the first and second layers induced by a
bias voltage. Since for every attainable carrier density, it is
possible to find a bias voltage to make the potential differ-
ence between the two layers as V �when the gap induced by
V is experimentally reachable�, we would not consider the
Coulomb interaction between imbalanced electron densities
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of the two layers and also neglect the dependence of V on the
carrier density n in this work.9,10,29–31

For charged impurities, the impurity scattering part of the
Hamiltonian is written as7,19,20,32

Ĥimp = �
i

Vi�ri�ni =
1

V0
�
q

Vi�q���q� . �3�

V0 is the volume of the system. The charge density operator
is defined as ��q�=�k�k

†�k+q. The electron-impurity scatter-
ing amplitude Vi�q� could be written as vi�q��i�−q�, where
�i�−q� and vi�q� are the Fourier components of the impurity
density and the electron-impurity potential, respectively. For
charged impurity, vi�q� is taken as of the Thomas-Fermi
type1,7,20

vi�q� =
2�e2

��q + qTF�
e−qd. �4�

� is the effective dielectric constant from lattice and sub-
strate, �=3 is adopted in this work.7,20,33 d is the distance
between the impurities and the graphene plane and would be
set as zero in the present work.1,7 qTF is the Thomas-Fermi
wave number and is obtained from the long-wavelength-limit
static polarizability of the corresponding noninteracting elec-
tron system1,20 as

qTF = 2�e2�/� �5�

with the static polarizability

� =
2

V0
�

0

	

d
�T
n�
�n†�0�	c. �6�

A factor of “2” comes from the twofold degeneracy in spin.
The subindex “c” means retaining only connected Feynman
diagrams in evaluating the expectation value. The particle
number operator is defined as

n�
� = �
k

�k
†�
��k�
� = �

k
�k

†�
��k�
� , �7�

where �k
† = �c1k

† ,c2k
† ,c3k

† ,c4k
† � with c�k

† representing the cre-
ation operator of the �th ��=1, 2, 3, and 4� eigenstate of
H0�k� with eigenenergy denoted as �k�. Thus � is obtained in
terms of the free particle eigenstates as

� =
2	

V0
�
k�

nF��k��nF�− �k�� , �8�

where �k�=�k�− and nF�x�=1 / �e	x+1� is the Fermi distri-
bution function,  is the chemical potential. 	 represents the
inverse temperature 1 /kBT, with kB the Boltzmann constant.
The value of � and thus qTF depends on both the temperature
and the chemical potential.

In order to calculate the thermopower, we should first
obtain the particle current and heat current operators jN and
jQ. They are obtained in terms of the continuity equation,
which for the particle current reads34,35

�̇�r� + � · jN�r� = 0. �9�

The momentum space version of the continuity function is

i�̇�q� = 
��q�,Ĥ� = q · jN�q� . �10�

A similar relationship holds for the energy density hE�q� and
the energy current jE�q�. With the particle density operator
defined as ��q�=�k��=1

2 �a�k
† a�,k+q+b�k

† b�,k+q�, the particle
current operator is obtained at the q=0 limit as

jN�q = 0� = �
k

�k
†j1

k�k, �11�

where the matrix j1
k is defined as

j1
k =�

0 vk 0 0

vk
� 0 0 0

0 0 0 vk
�

0 0 vk 0
� , �12�

where the velocity is defined as vk=�k��k�. The momentum
space energy density operator could be written as36 hE�q�
=�k�k

†h0�k ,q��k+q+ 1
V0

�q�Vi�q����q�+q�, where the free
part is

h0�k,q� =�
V

2
��k,q� t� 0

���k,q�
V

2
0 0

t� 0 −
V

2
���k,q�

0 0 ��k,q� −
V

2

� ,

�13�

where ��k ,q�= 
��k�+��k+q�� /2. Calculating the commu-
tator between hE�q� and the Hamiltonian, the energy current
operator could be obtained. The heat current operator, de-
fined by the q=0 limit of jQ�q�= jE�q�−jN�q�, is written as

jQ�q = 0� = �
k

�k
†j2

k�k +
1

V0
�
k,q�

Vi�q���k
†j1

k,q��k+q�,

�14�

where the free part is written as

j2
k

=�
d�k� �V

2
− vk 0

t�

2
vk

�

�V

2
− vk

� d�k�
t�

2
vk

� 0

0
t�

2
vk d�k� − �V

2
+ vk

�

t�

2
vk 0 − �V

2
+ vk dk,

�
�15�

with d�k�= 1
2 
vk���k�+vk

���k��. Substituting vk by 1
2 �vk+q�

+vk�, we obtain j1
k,q� from j1

k.
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We calculate the thermopower in terms of the Kubo’s
formula36,37 with impurity scattering treated to the order of
self-consistent Born approximation.7,19,32,38 The ther-
mopower is given by36,39,40

S = −
L12

eTL11
, �16�

where e is the absolute value of the electron charge. The
linear-response coefficients Lij are obtained from the corre-
lation function Lij�i�� by

Lij = − T lim
�→0

Im Lij�� + i0+�/� . �17�

In the Matsubara notation, the correlation function reads36

Lij�i�n� = −
iT

�i�n�dV0
�

0

	

d
ei�n
�T
ji�
� · j j�0�	 , �18�

where d=2 is the dimensionality, 	=1 /kBT, and T
 indicates
an ordering of the current operators with respect to the com-
plex time 
. �n is the bosonic Matsubara frequency related
with the current operator.

For charged impurities, only intravalley scattering is
important,7,19,20,41 so we neglect the intervalley scattering
processes in this work. Remembering that only states close
to the chemical potential contribute to the dc transport, we
could focus our attention at a single valley and retain only
those low-energy states. Here, we would focus on the valley
around K= ��3,1� 2�

3�3a
. Similar to the monolayer graphene

case, this could be achieved by introducing an energy cutoff
EC, such that only when the smaller positive eigenenergy is
less than EC would the states labeled by the corresponding
wave vector k be retained in our calculations.7,19 For experi-
mentally relevant carrier densities, EC is no larger than 1 eV.
In this energy range, ��k�� could be expanded as a polyno-
mial series in terms of the relative wave vector k=k�−K.
Here, we retain the expansion to the second order of k as

��k� � ��k + K� = − t�
j=1

3

ei�k+K�·�j

�
3t

2
ei�/3�kya − ikxa +

1

4
�kya + ikxa�2� . �19�

Test calculations show that the exact dispersion around K
could be excellently approximated by the above approxima-
tion up to EC�1.2 eV so it is accurate enough for our prob-
lem.

In terms of the approximate ��k�, the velocity vector sat-
isfies q · �vk+vk+q� /2=��k+q�−��k�. The impurity scatter-
ing part of the heat current operator could thus be written as
1

V0
�qVi�q�jN�q�.
Since the particle current operator is the same as that

without of impurity scattering, the linear-response coefficient
L11 could easily be shown to be7,19,20,36

L11 = T�
−�

+� d�

2�
�−

�nF���
��

�Re�P11�� − i0+,� + i0+�

− P11�� + i0+,� + i0+�� . �20�

The kernel is defined as

P11�z,z�� =
2

dV0
�
k

Tr�Gk�z��1�k,z,z��Gk�z�� · j1
k� �21�

with �1�k� as the vertex function corresponding to the wave
vector k.

Taking into account of the relationship j1
k,q= 1

2 j1
k+ 1

2 j1
k+q,

and following the same route as for the single orbital
model,36 it could be proved that L12 could be written into the
following form:5,7,36

L12 = T�
−�

+� d�

2�
�−

�nF���
��

�Re�P12�� − i0+,� + i0+�

− P12�� + i0+,� + i0+�� . �22�

The kernel P12 is simply P11 multiplied by the energy

P12�� � i0+,� + i0+� = �P11�� � i0+,� + i0+� . �23�

In our calculations, the positive infinitesimal 0+ would be
replaced by a small positive quantity �. In this work, we
adopt �=1 meV. A smaller � is verified not to change the
results to be presented in what follows.

Under the SCBA, the 4�4 Green’s-function matrix is
defined as Gk�z�= 
Gk

0�z�−1−�k�z��−1. The self energy is de-
termined by the following self-consistency relation

�k�z� =
ni

V0
�
k�

�vi�k − k���2
Gk�
0 �z�−1 − �k��z��−1, �24�

where Gk
0�z�= 
z+−H0�k��−1 is the free Green’s function. 

is the chemical potential determined from the free Hamil-
tonian for a certain carrier density. In this work, we would
neglect the shift in  by the impurity potential. This is
known as not giving rise to qualitative changes when the
impurity concentration is not very high.7 After obtaining the
Green’s functions, the vertex functions are calculated by the
following self-consistency relation

�1�k,z,z�� = j1
k +

ni

V0
�
k�

�vi�k − k���2

�Gk��z��1�k�,z,z��Gk��z�� . �25�

In obtaining the above self-consistent relations, averages
over impurity configurations have been done under SCBA
as37

��i�q��i�− q��	 = Ni�q,q�, �26�

where Ni=niV0 is number of impurities in the system under
consideration. For a set of k vectors, we can get the Green’s
functions and the vertex functions, then they are used to
calculate the kernels P11 and P12, and hence the linear-
response coefficients L11 and L12 could be obtained. If the
full Brillouin zone is utilized, the number of wave vectors
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would be too large for a practical calculation. However, since
only intravalley scattering is relevant for charged
impurities,7,15–17 we could focus on the low-energy states
within a cutoff energy EC around a single valley.

III. RESULT AND DISCUSSION

To see the effect of impurity scattering more clearly, we
first present the results for clean systems, where the bare
Green’s functions and vertex functions are used. The room-
temperature �300 K� thermopower of clean monolayer and
gapless bilayer graphene are presented in Fig. 1�a�. Here and
later, the abscissa index x represents the electron doping av-
eraged to per site, which could be controlled by an external
gate voltage.2–4 x=0.001 amounts to an electron density of
3.82�1012 cm−2 per layer. For the monolayer system,42 a
tight-binding model up to nearest-neighbor hopping t
=3 eV is used. Peak values of the two curves are almost the
same with that of the monolayer slightly larger. When a more
realistic parameter t=2.7 eV is used for the monolayer

graphene,21 the peak position shifts slightly away from x=0
while the peak value keeps almost unchanged as about
�83 V /K. Besides the low carrier density peak, ther-
mopower of gapless bilayer graphene shows a second
smaller peak at a higher carrier concentration. The onset of
the second peak, for which the peak position corresponds to
a chemical potential of ���316 meV, is associated with the
crossing of the chemical potential with the lower valence
band �band top at −t�=−300 meV� or the upper conduction
band �band bottom at t�=300 meV�.

We now explore the effect of opening a band gap in the
clean bilayer graphene. Figure 1�b� shows the thermopower
of bilayer graphene for a series of potential differences V
between the two layers. With the increase in V, peak value of
the thermopower increases quickly. For V=1 eV �corre-
sponding to an energy gap of approximately 288 meV, which
is experimentally achievable13�, peak value of the ther-
mopower is about 412 V /K, which is more than four times
that of the value in monolayer graphene and zero-gap bilayer
graphene. The much smaller second peak shifts continuously
to larger x as V increases and becomes irrelevant as V in-
creases to 1 eV. Hence, we would concentrate on the region
of low carrier density in the following. The smallest energy
gap between the conduction band and the valence band in-
creases with V as �=

Vt�

�t�
2 +V2 ,22,43 which is shown as an inset

in Fig. 1�b�. The large magnitude of thermopower and the
tunability of gap make the biased bilayer graphene a more
promising candidate for future thermoelectric applications as
compared with monolayer graphene.

In the following, we focus on the biased bilayer graphene
system with V=1 eV. In Fig. 2�a�, thermopower of this sys-
tem is shown as a function of chemical potential �� for
three different temperatures. When  is at the band edge �
��0.144 eV�, thermopower of all three temperatures are
nearly identical to each other. When  is inside of the band
gap, �S� increases as temperature decreases. While when 
lies in the bands, �S� increases as temperature increases. This
is similar to the corresponding behavior in semiconducting
armchair graphene nanoribbons.42,44 The corresponding de-
pendence of x on  is illustrated in Fig. 2�b�. When x is very
close to zero, �� decreases as temperature increases. As �x�
increases beyond a certain critical value, �� increases as
temperature increases. The above complex temperature de-
pendence is a direct result of the existence of the band edge
Van Hove singularities. From Figs. 2�a� and 2�b�, it is clear
that for 100 K, peak value of S is achieved at a doping very
close to zero. As temperature increases, the carrier density
for the peak increases continuously to larger values.

Now, we begin to study the effect of impurity. In this
work, charged impurity is considered as the only source of
scattering for impure bilayer graphene. Thermopower of bi-
layer graphene for a series of different impurity concentra-
tions are shown in Fig. 3�a� at room temperature for V
=1 eV. Curve for clean system is also displayed as a refer-
ence. In order to ensure that the SCBA is valid, we consider
only cases with small impurity concentrations. Up to a con-
centration of ni=5�1010 cm−2 per layer, peak value of the
thermopower increases continuously with the impurity con-
centration. The peak position remains unchanged. In these
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FIG. 1. �Color online� �a� Room-temperature thermopower as a
function of carrier density for clean monolayer graphene �MLG�
and gapless bilayer graphene �BLG�. �b� Room-temperature ther-
mopower of BLG for a series of potential-energy differences V
between the two layers. Inset of �b� shows the evolution of the
global energy gap � as a function of V.
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relatively clean systems, the influence of localization22–24 can
be safely neglected.

Here and later when impurity scattering is considered, an
energy cutoff of EC=0.5 eV is used. Test calculations by
increasing EC show no perceivable change in the results for
both clean and impure systems in the considered low carrier
density region. For most energies, the self-consistency for
the Green’s functions and vertex functions converge within
100 iterations with an accuracy of 10−5 and 10−4 for the
modulus of every element, respectively. For a symmetric
band structure, as is the case for both clean monolayer and
bilayer graphene, thermopower is an odd function of the car-
rier density.1,7 In the presence of charged impurities, the
electron-hole symmetry of the band is preserved which could
be seen by explicitly calculating the density of states. So we
expect the relationship S�−x�=−S�x� survives. The full curve
for ni=5�1010 cm−2 and T=300 K is calculated explicitly,
verifying the above statement. To save computing time, for

all other parameter sets in the presence of impurity, ther-
mopower is calculated explicitly for the hole-doped cases
with x�0. The results for x�0 are obtained through S�x�=
−S�−x�.

The Thomas-Fermi screening wave vector is shown in
Fig. 3�b� as a function of carrier density at 300 and 50 K for
V=1 eV. At 300 K, as a result of thermal excitations, we get
a finite qTFa�0.017 for zero doping. As temperature goes
down, the zero doping Thomas-Fermi screening wave vector
decreases gradually. As could be seen in the inset of Fig.
3�b�, qTF�x=0� is very close to zero at 50 K. This result is
similar to the monolayer graphene system and is different
from the gapless bilayer graphene, for which the zero doping
qTF is finite even at zero temperature for the nonvanishing
density of states there.45 The two peaks in Fig. 3�b� arise
from the Van Hove singularities near the conduction-band
bottom and the valence-band top, and are shifted to larger
carrier densities at higher temperature by thermal excitations.

Previous works1–4,7,42 on monolayer graphene show that
impurity scattering is essential to reproduce the temperature
dependence of the thermopower observed experimentally.
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cal potential for a biased bilayer graphene, at three different tem-
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Thermopower of gapped bilayer graphene with the same im-
purity concentration ni=5�1010 cm−2 are shown as a func-
tion of carrier density for room temperature and 50 K in Fig.
4. Results for x�10−5 are readily obtained for both tempera-
tures. However, for x at and very close to zero, only results
for T=300 K are obtained within our calculation time. This
is understood from Fig. 3�b� as a result of reduced screening
at a temperature as low as 50 K.7 As temperature decreases,
thermopower is suppressed and peak position of ther-
mopower shifts slightly towards zero doping. These results
are qualitatively very similar to the experimental results for
monolayer graphene.2–4

A peculiar feature of our results is that the maximum
value of S at room temperature increases with impurity con-
centration ni, as shown in Fig. 3�a�. By increasing the energy
cutoff EC and the number of wave vectors in the Brillouin
zone, we have verified that the above result is robust. In
order to have a better understanding, we show the variation
in L11 and L12 for x=−3�10−5 in Fig. 5�a�. It is clear that,
both L11 and L12 decrease sharply as ni increases. However,
the reduction in L11 is somewhat larger than that of L12. The
increase in room temperature S thus comes as a result of the
stronger dependence of L11 on ni as compared with L12. The
reason why L11 decreases faster than L12 as ni increases is
encoded in the integration kernels of the two linear-response
coefficients, Eqs. �21� and �23�. Equation �23� shows that
states above and below of the chemical potential contribute
to L12 in opposite sign but of the same sign for L11. Hence
L11 is more sensitive to the variation in density of states
�DOS� in the conduction band and valence band due to the
presence of impurities which is shown in Fig. 5�b� for two
impurity concentrations at V=1 eV and T=300 K. In a pre-
vious theoretical work on graphene nanoribbon,42 a similar
increase in S with defect density is also observed.

We now try to understand the doping dependence of the
shape of thermopower in the small carrier density region.
From the definitions in Eqs. �16�, �20�, and �22�, ther-
mopower could be understood as the average value of �E

−� weighted by the combination of electron group velocity
�encoded in vk in the current operator and the renormalized
current vertex� and DOS.42,46 States above and below of the
chemical potential contribute in the opposite sign to S. At the
same time, the factor �nF /��=−nF�1−nF� /kBT is substan-
tially nonzero only in an energy range of several kBT cen-
tered symmetrically around the chemical potential. It is thus
easy to understand that S tends to be larger once the DOS
and �or� group velocity between states above and below the
chemical potential have a big contrast.47 According to this
picture, when  is deep inside of the band �but still in the
low carrier density region�, where the DOS is nearly flat
according to Fig. 5�b�, the thermopower would be small. As
the chemical potential moves close to the band edge, differ-
ence between states above and below of the chemical poten-
tial increases, which results in the increase in S. At finite
temperature, when the doping is at or very close to the band
edge Van Hove singularities,  would be inside of the gap. In
these cases, all states are high-energy states measured from
. Since S would be larger once the higher �E−� states
contribute more to the integration, S is expected to continue
increase for very low carrier densities. As shown in previous
works,42,46 for  inside of the semiconducting gap, the most
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significant part of S comes from a term of the form

S � ��

2
− ��/eT , �27�

which clearly shows the increase in S as →0 �or equiva-
lently, x→0�.

The above picture explains the initial increase in ther-
mopower as �x� decreases. However, when the carrier density
is very close to zero, the chemical potential also lies close to
zero energy. Hence, both the valence-band and the
conduction-band states are present by thermal excitations.
Since the contributions to thermopower from valence- and
conduction-band states are opposite in sign, the thermopower
is expected to decrease at a critical carrier density character-
ized by the temperature.2,3,42 The critical �x� below which the
magnitude of thermopower starts to decrease is thus ex-
pected to increase with temperature. This explains the shift
of peak position as observed in Figs. 2 and 4. In Ref. 7 on
thermopower of monolayer graphene, the deviation at low
carrier density from the higher density Mott’s behavior1,46 is
ascribed to impurity scattering mediated coherence between
the conduction and valence bands. According to this mecha-
nism, as impurity concentration ni increases, the above co-
herence effect should enhance. So a shift of peak position
with ni is expected. At 50 K and for ni=5�1010 cm−2, the
peak position is shown to shift from xC�0 to xC�2�10−5.
However, for 300 K, the xC show no perceivable variation
with ni up to ni=5�1010 cm−2. A calculation beyond the
SCBA is needed to know whether or not the peak position
for 300 K would shift for much larger ni.

It is also interesting to ask why introducing a gap signifi-
cantly enhances the thermopower of bilayer graphene. For-
merly, a “pudding mold” mechanism47 is introduced to ac-
count for the large thermopower observed in cobaltates. In
that model, a band with a somewhat flat portion connected to
a highly dispersive portion is proposed to give high ther-
mopower when the chemical potential lies close to the bend-
ing point. Band structure of biased bilayer graphene is ex-
actly of pudding moldlike.9,47 So the increase in S with V for
a carrier density typically of x= �0.001, for which the
chemical potential lies inside of the band, is understood as
resulting from the onset of the pudding mold mechanism.
However, peak value of S occurs when  situates inside of
the band gap. In this case, as mentioned above, Smax could be
estimated by Eq. �27�.42,46 For V=1 eV, ��288 meV. For
x=−3�10−5 and T=300 K, the chemical potential �
−40 meV, Eq. �27� gives a value of approximately
347 V /K which is about 80% of the values in Fig. 2�a�. So
in the present case, Smax is set by the energy gap �, which
increases with V and is bounded by a limit, t�.22,43 Hence,
the large maximum thermopower in biased bilayer graphene
is mainly a result of the energy gap.

Taking into account of the band asymmetry arising from
the on-site energy difference between the two kinds of car-

bon sublattices, the band gap becomes asymmetric and the
conduction �or the valence, depending on the sign of V� band
would be more flat.48 However, since the on-site energy dif-
ference derived from experiment is only about 0.018 eV,48

we expect the above effect is extremely small and would not
change our present result much. The interlayer hopping is
estimated to be in the range of t��0.3–0.4 eV.49 Our test
calculation in clean system with t�=0.4 eV for V=1 eV
�with other parameters unchanged� gives a peak ther-
mopower value of approximately 544 V /K at 300 K,
which is 132 V /K larger than the result for t�=0.3 eV.
So, the thermopower of gapped bilayer graphene is large
regardless of the choice of model parameters.

Applying an electric field to trilayer or other multilayer
graphene system, a gap could also be induced.30,31 For cer-
tain parameters, the band structure is also of pudding
moldlike.30,31 It is thus interesting to ask how the peak value
of thermopower evolves as a function of the layer number. In
this work, we have only considered the effect of charged
impurity scatterings. Recently, it has been proposed that scat-
tering by short-range disorder may also play an important
role in the transport of gapless bilayer graphene because the
screening of charged impurities in zero-gap bilayer graphene
is much stronger than that in monolayer graphene.18,45

Though we believe that the degree of screening in gapped
bilayer graphene should be much smaller than that in the
gapless system, it is an interesting question whether the in-
clusion of short-range scatterers would change our present
results much. On the other hand, the regime of large impurity
concentration or strong impurity strength deserves an explicit
study in terms of a less severe approximation as compared
with SCBA used above. We defer the above questions to later
studies.

IV. SUMMARY

We have theoretically studied the thermopower of bilayer
graphene. If a band gap of approximately 288 meV is in-
duced in the system by an external bias, the room-
temperature thermopower is greatly enhanced by a factor of
larger than 4 as compared with that of the monolayer
graphene and the gapless bilayer graphene. In the presence of
dilute charged impurities, peak value of the room-
temperature thermopower is shown to increase slightly. This
behavior is analyzed in terms of the different dependence of
L11 and L12 on the modification of density of states by im-
purity. As temperature decreases, peak position of ther-
mopower shifts slightly towards zero carrier density in the
presence of dilute charged impurities.
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